3.235 \(\int \frac{x^3 (A+B x^3)}{(a+b x^3)^{3/2}} \, dx\)

Optimal. Leaf size=269 \[ \frac{4 \sqrt{2+\sqrt{3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} (5 A b-8 a B) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt{3}\right )}{15 \sqrt [4]{3} b^{7/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}-\frac{2 x (5 A b-8 a B)}{15 b^2 \sqrt{a+b x^3}}+\frac{2 B x^4}{5 b \sqrt{a+b x^3}} \]

[Out]

(-2*(5*A*b - 8*a*B)*x)/(15*b^2*Sqrt[a + b*x^3]) + (2*B*x^4)/(5*b*Sqrt[a + b*x^3]) + (4*Sqrt[2 + Sqrt[3]]*(5*A*
b - 8*a*B)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(
1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*S
qrt[3]])/(15*3^(1/4)*b^(7/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[
a + b*x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0995218, antiderivative size = 269, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136, Rules used = {459, 288, 218} \[ \frac{4 \sqrt{2+\sqrt{3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} (5 A b-8 a B) F\left (\sin ^{-1}\left (\frac{\sqrt [3]{b} x+\left (1-\sqrt{3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt{3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt{3}\right )}{15 \sqrt [4]{3} b^{7/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}-\frac{2 x (5 A b-8 a B)}{15 b^2 \sqrt{a+b x^3}}+\frac{2 B x^4}{5 b \sqrt{a+b x^3}} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*(A + B*x^3))/(a + b*x^3)^(3/2),x]

[Out]

(-2*(5*A*b - 8*a*B)*x)/(15*b^2*Sqrt[a + b*x^3]) + (2*B*x^4)/(5*b*Sqrt[a + b*x^3]) + (4*Sqrt[2 + Sqrt[3]]*(5*A*
b - 8*a*B)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(
1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*S
qrt[3]])/(15*3^(1/4)*b^(7/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[
a + b*x^3])

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{x^3 \left (A+B x^3\right )}{\left (a+b x^3\right )^{3/2}} \, dx &=\frac{2 B x^4}{5 b \sqrt{a+b x^3}}-\frac{\left (2 \left (-\frac{5 A b}{2}+4 a B\right )\right ) \int \frac{x^3}{\left (a+b x^3\right )^{3/2}} \, dx}{5 b}\\ &=-\frac{2 (5 A b-8 a B) x}{15 b^2 \sqrt{a+b x^3}}+\frac{2 B x^4}{5 b \sqrt{a+b x^3}}+\frac{(2 (5 A b-8 a B)) \int \frac{1}{\sqrt{a+b x^3}} \, dx}{15 b^2}\\ &=-\frac{2 (5 A b-8 a B) x}{15 b^2 \sqrt{a+b x^3}}+\frac{2 B x^4}{5 b \sqrt{a+b x^3}}+\frac{4 \sqrt{2+\sqrt{3}} (5 A b-8 a B) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt{\frac{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac{\left (1-\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt{3}\right )}{15 \sqrt [4]{3} b^{7/3} \sqrt{\frac{\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt{3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt{a+b x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0763849, size = 78, normalized size = 0.29 \[ \frac{2 x \left (\sqrt{\frac{b x^3}{a}+1} (5 A b-8 a B) \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};-\frac{b x^3}{a}\right )+8 a B-5 A b+3 b B x^3\right )}{15 b^2 \sqrt{a+b x^3}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(A + B*x^3))/(a + b*x^3)^(3/2),x]

[Out]

(2*x*(-5*A*b + 8*a*B + 3*b*B*x^3 + (5*A*b - 8*a*B)*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/3, 1/2, 4/3, -((b*x
^3)/a)]))/(15*b^2*Sqrt[a + b*x^3])

________________________________________________________________________________________

Maple [B]  time = 0.018, size = 627, normalized size = 2.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(B*x^3+A)/(b*x^3+a)^(3/2),x)

[Out]

B*(2/3/b^2*a*x/((x^3+a/b)*b)^(1/2)+2/5/b^2*x*(b*x^3+a)^(1/2)+32/45*I*a/b^3*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/b*
(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b
*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1
/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^
(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2
*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))+A*(-2/3/b*x/((x^3+a/b)*b)^(1/2)-4/9*I/b^2*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1
/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-
3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^
2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2
*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3
)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{3} + A\right )} x^{3}}{{\left (b x^{3} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x^3+A)/(b*x^3+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*x^3 + A)*x^3/(b*x^3 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (B x^{6} + A x^{3}\right )} \sqrt{b x^{3} + a}}{b^{2} x^{6} + 2 \, a b x^{3} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x^3+A)/(b*x^3+a)^(3/2),x, algorithm="fricas")

[Out]

integral((B*x^6 + A*x^3)*sqrt(b*x^3 + a)/(b^2*x^6 + 2*a*b*x^3 + a^2), x)

________________________________________________________________________________________

Sympy [A]  time = 16.3946, size = 80, normalized size = 0.3 \begin{align*} \frac{A x^{4} \Gamma \left (\frac{4}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{4}{3}, \frac{3}{2} \\ \frac{7}{3} \end{matrix}\middle |{\frac{b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac{3}{2}} \Gamma \left (\frac{7}{3}\right )} + \frac{B x^{7} \Gamma \left (\frac{7}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{3}{2}, \frac{7}{3} \\ \frac{10}{3} \end{matrix}\middle |{\frac{b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac{3}{2}} \Gamma \left (\frac{10}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(B*x**3+A)/(b*x**3+a)**(3/2),x)

[Out]

A*x**4*gamma(4/3)*hyper((4/3, 3/2), (7/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/2)*gamma(7/3)) + B*x**7*gamma(7
/3)*hyper((3/2, 7/3), (10/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/2)*gamma(10/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B x^{3} + A\right )} x^{3}}{{\left (b x^{3} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(B*x^3+A)/(b*x^3+a)^(3/2),x, algorithm="giac")

[Out]

integrate((B*x^3 + A)*x^3/(b*x^3 + a)^(3/2), x)